Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes
نویسندگان
چکیده
We study a finite volume method, used to approximate the solution of the linear two dimensional convection diffusion équation, with mixed Dirichlet and Neumann boundary conditions, on Cartesian meshes refined by an automatic technique (which leads to meshes with hanging nodes). We propose an analysis through a discrete variational approach, in a discrete H finite volume space. We actually prove the convergence of the scheme in a discrete H norm, with an error estimate of order O(h) (on meshes of size h). Mathematics Subject Classification. 65C20, 65N12, 65N15, 76R50, 45L10. Received: October 19, 1999. Revised: June 28, 2000.
منابع مشابه
A finite volume method on general meshes for a degenerate parabolic convection-reaction-diffusion equation
We propose a finite volume method on general meshes for the discretization of a degenerate parabolic convection-reaction-diffusion equation. Equations of this type arise in many contexts, such as the modeling of contaminant transport in porous media. We discretize the diffusion term, which can be anisotropic and heterogeneous, via a hybrid finite volume scheme. We construct a partially upwind s...
متن کاملAdaptive Unstructured Grid Generation Scheme for Solution of the Heat Equation
An adaptive unstructured grid generation scheme is introduced to use finite volume (FV) and finite element (FE) formulation to solve the heat equation with singular boundary conditions. Regular grids could not acheive accurate solution to this problem. The grid generation scheme uses an optimal time complexity frontal method for the automatic generation and delaunay triangulation of the grid po...
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملMonotonic solution of flow and transport problems in heterogeneous media using Delaunay unstructured triangular meshes
Transport problems occurring in porous media and including convection, diffusion and chemical reactions, can be well represented by systems of Partial Differential Equations. In this paper, a numerical procedure is proposed for the fast and robust solution of flow and transport problems in 2D heterogeneous saturated media. The governing equations are spatially discretized with unstructured tria...
متن کاملThe Discrete Duality Finite Volume Method for Convection-diffusion Problems
In this paper we extend the Discrete Duality Finite Volume (DDFV) formulation to the steady convection-diffusion equation. The discrete gradients defined in DDFV are used to define a cellbased gradient for the control volumes of both the primal and dual meshes, in order to achieve a higher-order accurate numerical flux for the convection term. A priori analysis is carried out to show convergenc...
متن کامل